Automatic basis selection techniques for RBF networks
نویسندگان
چکیده
This paper proposes a generic criterion that defines the optimum number of basis functions for radial basis function (RBF) neural networks. The generalization performance of an RBF network relates to its prediction capability on independent test data. This performance gives a measure of the quality of the chosen model. An RBF network with an overly restricted basis gives poor predictions on new data, since the model has too little flexibility (yielding high bias and low variance). By contrast, an RBF network with too many basis functions also gives poor generalization performance since it is too flexible and fits too much of the noise on the training data (yielding low bias but high variance). Bias and variance are complementary quantities, and it is necessary to assign the number of basis function optimally in order to achieve the best compromise between them. In this paper we use Stein's unbiased risk estimator to derive an analytical criterion for assigning the appropriate number of basis functions. Two cases of known and unknown noise have been considered and the efficacy of this criterion in both situations is illustrated experimentally. The paper also shows an empirical comparison between this method and two well known classical methods, cross validation and the Bayesian information criterion, BIC.
منابع مشابه
Orthogonal Forward Selection for Constructing the Radial Basis Function Network with Tunable Nodes
An orthogonal forward selection (OFS) algorithm based on the leaveone-out (LOO) criterion is proposed for the construction of radial basis function (RBF) networks with tunable nodes. This OFS-LOO algorithm is computationally efficient and is capable of identifying parsimonious RBF networks that generalise well. Moreover, the proposed algorithm is fully automatic and the user does not need to sp...
متن کاملModel Selection of RBF Networks via Genetic Algorithms
One of the main obstacles to the widespread use of artificial neural networks is the difficulty of adequately defining values for their free parameters. This work discusses how Radial Basis Function (RBF) neural networks can have their free parameters defined by Genetic Algorithms (GAs). For such, it firstly presents an overall view of the problems involved and the different approaches used to ...
متن کاملPerformance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
In the present study, RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tex and emissions from the engine were measured. These experimental results were used for ANN modeling. R...
متن کاملRecent Advances in Radial Basis Function Networks
In 1996 an Introduction to Radial Basis Function Networks was published on the web 2 along with a package of Matlab functions 3. The emphasis was on the linear character of RBF networks and two techniques borrowed from statistics: forward selection and ridge regression. This document 4 is an update on developments between 1996 and 1999 and is associated with a second version of the Matlab packa...
متن کاملRBF Network with Genetic Algorithm for Feature Selection
The aim of this paper is to show the possible improvement of the reliability of classification of RBF networks using genetic algorithms for attribute selection. A disadvantage of RBF networks is that they cannot deal effectively with irrelevant features. Genetic search may filter features leading to reduce dimensionality of the feature space. In our experiments, genetic search improves classifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 16 5-6 شماره
صفحات -
تاریخ انتشار 2003